

Hammurabi 🏺

[image: _images/2ts980c3qzhz.jpg]

	👩‍🏫 Introduction
	Features

	Rationale

	Release History

	🦍 Quick Start
	Installation

	Input

	Rules

	Callbacks

	A Complete Example

	🎯 Writing Rules
	Basic rule syntax

	Union (OR)

	Optionals and multiples

	Regular Expression

	Variables

	Callbacks and Labels

	🤖 spaCy and callbacks
	Hammurabi in spaCy 2.X pipelines

	Hammurabi in spaCy 3.X pipelines

	Handling Callbacks

	👑 hrmb package
	hmrb.core module

	hmrb.node module

	hmrb.lang module

	hmrb.protobuffer module

Documentation for the Code

	Module Index

👩‍🏫 Introduction

Hammurabi[hmrb] is a system designed to efficiently execute rules on sequences of data. Its rule syntax is simple and human-readable but also very expressive.

As input, the system takes a sequence of hash tables (Python dict) and is capable of matching any combination of key-value pairs in order. It was designed as a task agnostic framework applicable to a variety of tasks, for instance, intent recognition, text annotation and log monitoring.

Features

	Attribute level rule definitions using key-values pairs

	Efficient matching of sequence using hash tables with no limit on length

	Support for nested boolean expressions and wildcard operators similar to regular expressions

	Variables can be side-loaded and reused throughout different rule sets

	User-defined rule-level callback functions triggered by a match

	Labels to tag and retrieve matched sequence segments

Rationale

Rules and heuristics are often used to kick start a project which has insufficient data for a machine learning solution. Hammurabi was built to abstract away these rules and heuristics and make them simple, reliable and explainable. This reduces the effort of building, testing and maintaining early-stage products.

Release History

	Version

	v1.2.1 (25.01.2022)

v1.2.0 (14.05.2021)

v1.1.1 (25.02.2021)

v1.1.0 (02.02.2021)

v1.0.0 (29.04.2020)

🦍 Quick Start

Hammurabi is a generic rule engine library that allows the user to match
sequences of objects with an arbitrary set of attributes against a
grammar of rules (for more details see 🎯 Writing Rules).

Installation

To begin, simply install the package from a supported repository (PyPi, Gemfury, Artifactory):

$ pip install hmrb

Input

A great way to illustrate the use of Hammurabi is processing
annotated text against a rule grammar. Here we will implement a toy relation
extraction grammar that will look for people that love gorillas. Annotated text
is a sequence of tokens with annotation attributes – this can be the input of
the system. For example, we can run a few sentences through
spaCy [https://spacy.io/] and serialise the output in JSON like this:

import json
import spacy

nlp = spacy.load('en_core_web_sm')
sentences = 'I love gorillas. Peter loves gorillas. Jane loves Tarzan.'
input_ = []
for sent in nlp(sentences).sents:
 sent_lst = []
 for token in sent:
 token_dict = {
 'text': token.orth_,
 'lemma': token.lemma_,
 'pos': token.pos_
 }
 sent_lst.append(token_dict)
 input_.append(sent_lst)
with open('my-input.json', 'w') as fh:
 json.dump(input_, fh, indent=2)

Content of my-input.json:

[
 [
 {"text": "I", "lemma": "-PRN-", "pos": "PRON"},
 {"text": "love", "lemma": "love", "pos": "VERB"},
 {"text": "gorillas", "lemma": "gorilla", "pos": "NOUN"},
 {"text": ".", "lemma": ".", "pos": "PUNCT"}
],
 [
 {"text": "Peter", "lemma": "Peter", "pos": "PROPN"},
 {"text": "loves", "lemma": "love", "pos": "VERB"},
 {"text": "gorillas", "lemma": "gorilla", "pos": "NOUN"},
 {"text": ".", "lemma": ".", "pos": "PUNCT"}
],
 [
 {"text": "Jane", "lemma": "Jane", "pos": "PROPN"},
 {"text": "loves", "lemma": "love", "pos": "VERB"},
 {"text": "Tarzan", "lemma": "Tarzan", "pos": "PROPN"},
 {"text": ".", "lemma": ".", "pos": "PUNCT"}
]
]

Rules

In order to capture the right sequence, we need to write a grammar
with rules that would detect the sentences containing people that like gorillas.
For more details on grammar see 🎯 Writing Rules.
Referencing the Babylonian king, rules in Hammurabi are denoted with
the keyword Law. We wrote below a simple subject-verb-object rule
that aims to detect all people that love gorillas:

Law:
(
 (pos: "PROPN")
 (text: "loves")
 (text: "gorillas")
)

It is a very specific rule that will match only one of our input sentences, so
we may want to relax it a little bit. We can include pronouns as well as names
for the subject and abstract the number of both subject and object by using
lemma requirements instead of text:

Law:
- callback: "gorilla people"
(
 ((pos: "PROPN") or (pos: "PRON"))
 (lemma: "love")
 (lemma: "gorilla")
)

Now that we’ve relaxed our rule, we may want to detect other things in our
input like say love interests. We can write another rule that identifies a
person that loves another person but this time keep it specific:

Law:
- callback: "lover"
(
 (pos: "PROPN")
 (text: "loves")
 (pos: "PROPN")
)

Callbacks

Hammurabi supports passing a callback function using the reserved callback attribute.
The name provided as value is looked up against a dictionary provided to the callbacks parameter
of the Core constructor. The functions associated with matched rules are executed
after the matching process is complete. They are passed three positional parameters
which then need to handle: the original object sequence seq, the slice of span
matched based on the sequence, and all the associated rule attributes from the grammar
as data.

All rules (Laws) can take an arbitrary number of attributes that will be part
of the data structure that is passed along with a matched span. This way the user
can identify the rule that was fired and if necessary take action or access some
specific data/information through this mechanism.

A Complete Example

import json
from hmrb.core import Core

with open("examples/my-input.json", "r") as fh:
 input_ = json.load(fh)

def conj_be(subj: str) -> str:
 if subj == "I":
 return "am"
 elif subj == "you":
 return "are"
 else:
 return "is"

def gorilla_clb(seq: list, span: slice, data: Dict) -> None:
 subj = seq[span.start]["text"]
 be = conj_be(subj)
 print(f"{subj} {be} a gorilla person.")

def lover_clb(seq: list, span: slice, data: Dict) -> None:
 print(
 f'{seq[span][-1]["text"]} is a love interest of'
 f'{seq[span.start]["text"]}.'
)

clbs = {"gorilla people": gorilla_clb, "lover": lover_clb}

grammar = """
Law:
- callback: "gorilla people"
(
((pos: "PROPN") or (pos: "PRON"))
(lemma: "love")
(lemma: "gorilla")
)
Law:
- callback: "lover"
(
(pos: "PROPN")
(text: "loves")
(pos: "PROPN")
)
"""

hmb_ext = Core(callbacks=clbs)
hmb_ext.load(grammar)

print("Loaded grammar...")

process sentences one by one
for i, sent in enumerate(input_, start=1):
 hmb_ext(sent)

Loaded grammar...
Processing sent 1
I am a gorilla person.
Processing sent 2
Peter is a gorilla person.
Processing sent 3
Tarzan is a love interest of Jane.

🎯 Writing Rules

Adding rules to Hammurabi is straightforward using a simple human readable
syntax capable of defining complex rules.

This section walks you through steps to define rules for Hammurabi. Each subsection
introduces a new feature that can be added to better express your rule. Naturally
you can combine them as you see fit.

Basic rule syntax

The following code snippet shows the structural framework of a simple rule.
You define a rule as a Law within Hammurabi.

Law <name>:
 - <return key>: "<return value>"
 - <return key>: "<return value>"
 - callback: "<callback name>"

(
 (attribute: "value")
 ...
 (attribute: "value")
)

	Following a Law keyword, you can optionally define a name for the rule. This allows the immediate re-use of the law in a subsequent rule.

	The initial head part of the Law lists key-value pairs that are returned if the rule is matched. The return key can be any string value except reserved keys callback and _.

	Finally, the body part contains definition of the token sequence which the rule is intended to match.

Attributes matched by the rule engine are defined as key-value pairs.

	Keys come from your problem setting’s vocabulary. For instance, in time-series, this could be any attribute of a time-step, or in Natural Language Processing this could be meta-data on your word tokens.

	Values define the actual token needed the pass the rule. Types supported are string, bool, int and float. The values most importantly should align with your key vocabulary.

Note

Escaping characters is required in string values for special characters i.e. " should be entered as \" and \ as \\.

Example 1 - Single attribute

Law
 - package: "found number of icecreams needed"
(
 (written_number: True) # could match a number like "one"
 (text: "icecream")
)

You can also define multiple attribute conditions that must be true for an element (we consider this as an and relationship between attributes). For example, in the below rule both icecream and yell attributes need to match the second sequence element.

Example 2 - Multiple attributes for a token

Law
 - package: "found angry person demanding lots of icecream"
(
 (text: "much")
 (text: "icecream", yell: True)
 (today: True)
)

[image: _images/alex-jones-6799-unsplash.jpg]

Photo by Alex Jones [https://unsplash.com/photos/VPnvh8vj7lc]

Union (OR)

You can also define rules that require a union logic between tokens. Unions are defined by the or keyword.
Note that unions must be wrapped in brackets (the indent is optional)

Example 3 - Simple union example

Law
 - package: "found person with small icecream appetite"
(
 (
 (text: "small")
 or
 (text: "little")
)
 (text: "icecream")
)

Multiple unions can be nested in a simple structure allowing Hammurabi to define complex rules in a simple manner.

Example 4 - Nested union example

Law
 - package: "handling lots of icecream"
(
 (
 (
 (text: "much")
 or
 (text: "little")
)
 or
 (
 (type: "vanilla")
 or
 (type: "chocolate")
 or
 (type: "strawberry")
)
)
 (text: "icecream")
)

Note

and syntax: by definition an intersection logic exists between sequential tokens. As mentioned earlier, an and logic exists between attribute key-value pairs.

Optionals and multiples

To allow compact rules, Hammurabi supports defining optionals and multiples.
Each section or element can be marked with the number of times it should be matched.
The table below summarises the available logical syntax.

	Syntax

	Min

	Max

	optional

	0

	1

	one or more

	1

	inf

	zero or more

	0

	inf

	X to Y

	X

	Y

	(default)

	1

	1

Example 5 - Optionals example

Law
 - package: "found person who might be willing to pay for icecream"
(
 optional (text: "free")
 (text: "icecream")
)

Example 6 - Complex optionals example

Law
 - package: "found person only looking for (very) big icecream"
(
 zero or more (text: "very")
 (text: "big")
 1 to 2 (text: "icecream")
)

Naturally, this functionality can be combined with any other syntax on any level.

Example 7 - Nested optionals example

Law
 - package: "found person only looking for bright icecream of any flavor"
(
 (text: "bright")
 optional (
 (type: "vanilla")
 or
 (type: "chocolate")
 or
 (type: "strawberry")
)
 (text: "icecream")
)

Regular Expression

Hammurabi also supports defining attribute values as regular expressions (see Python RE library [https://docs.python.org/3/library/re.html/]).
The full syntax is as (attribute: regex(“<regex expression>”)) and can be used on any string value.

Example 8 - Regex example

Law
 - package: "found person only looking for some quantity of icecream"
(
 optional (text: "around")
 (text: regex("([0-9])\w+"))
 (text: "icecream")
)

Note

Escaping character inside Regex needs to be doubled for special characters i.e. \. should be entered as \\. and \\ as \\\.

Variables

Variables allow the reuse of rules, which makes the grammar more readable as well as more efficient.
There are two types of variabels supported in Hammurabi: Var and named Law.

Definitions:

	Var <name>: To reuse a sequence of token rules simply define it as a variable. The variable definition uses a similar syntax to defining laws with the addition of naming the variable. This allows us to refer to it in subsequent code. Note that variable definitions are not actually rules. They are elements to be used in Laws and will not be matched on their own. For this same reason, they consist solely of the body (i.e. no head part). To support functionality where you want to not only define a rule but also reuse it in other rules, we added named laws (see below).

	Law <name>: To reuse a Law as a variable add a name to its definition. You can refer to it in exactly the same way as a variable $name.

References:

	$<name> use references to add a sequence defined in a variable to your rule (or to another variable). A reference is defined as the name of a defined variable preceded by $. Variable references can be used in conjunction with other features of the language such as optionals and labels.

Example 9 - Variable example

Var flavored_icecream:
(
 (
 (type: "vanilla")
 or
 (type: "chocolate")
 or
 (type: "strawberry")
)
 (text: "icecream")
)

Law
 - package: "found person only looking for some quantity of icecream"
(
 (text: "we")
 (text: "want")
 $flavored_icecream
)

When redefining the same as named law (as shown in the below example) you will receive matches for both sections.

Example 10 - Named law example

Law flavored_icecream:
(
 (
 (type: "vanilla")
 or
 (type: "chocolate")
 or
 (type: "strawberry")
)
 (text: "icecream")
)

Law
 - package: "found person only looking for some quantity of icecream"
(
 (text: "we")
 (text: "want")
 $flavored_icecream
)

Callbacks and Labels

Hammurabi also makes it easy to work with the actual matches. We support both
retrieval of data through labels and defining a custom action to be executed on match.

Definitions:

	<label> -> is the syntax that defines a label. It can be added to any element of the rule. Hammurabi will return the (start, end) offsets of the label within the original sequence in the match object.

	- callback: "<callback_name>" is the syntax used to attach a callback to a Law, named Law or Var. The <callback_name> string needs to match the key in the (key, function) dictionary that is passed in during the construction of the engine.

Example 11 - Labels and callbacks

Law flavored_icecream:
(
 flavour -> (
 (type: "vanilla")
 or
 (type: "chocolate")
 or
 (type: "strawberry")
)
 (text: "icecream")
)

Law
 - package: "found person only looking for some quantity of icecream"
 - callback: "handle_icecream_van"
(
 (text: "we")
 (text: "want")
 $flavored_icecream
)

🤖 spaCy and callbacks

Hammurabi in spaCy 2.X pipelines

We provide native support for spaCy through the SpacyCore object.
The SpacyCore object can simply be integrated into your existing spaCy 2.X pipelines.

from hmrb.core import SpacyCore
core = SpacyCore(callbacks=CALLBACKS,
 map_doc=convert_to_json_fn,
 sort_length=True)

core.load(rules)
nlp.add_pipe(core)

SpacyCore takes a dict of callbacks, an optional function that converts spaCy doc type (to_json) to a representation that corresponds to your rules and a bool whether to sort and execute in ascending order according to match length.

Once the object is instantiated, you can load rules using the .load method.

Hammurabi in spaCy 3.X pipelines

We also provide native support for spaCy 3.0+. You still have to import the SpacyCore object to run the component registration and the configuration syntax is slightly different versus 2.0.

We follow the new custom pipeline component API under spacy.language [Link] [https://spacy.io/usage/processing-pipelines#custom-components]:

First, we have to register both our augmenter functions map_doc and any callback functions we would call in spaCy’s registry.

Second, we have to create a configuration dictionary that contains the rules and references the callbacks and mapping functions as shown in the example below.

Finally, we can add the "hmrb" pipeline component using our configuration to the spaCy pipeline.

from hmrb.core import SpacyCore

@spacy.registry.augmenters("jsonify_span")
def jsonify_span(span):
 return [
 {"lemma": token.lemma_, "pos": token.pos_, "lower": token.lower_}
 for token in span
]

@spacy.registry.callbacks("dummy_callback")
def dummy_callback(seq: list, span: slice, data: dict) -> None:
 print("OK")

conf = {
 "rules": GRAMMAR
 "callbacks": {"my_callback": "callbacks.dummy_callback"}
 "map_doc": "augmenters.jsonify_span"
}
nlp.add_pipe(SpacyCore.name, config=conf)

Handling Callbacks

Callbacks allow defining a custom action to be executed upon matching. There are no restrictions on how callbacks can be used, but we provide a few handy patterns below.

Validation

Callbacks can be used to validate likely matches and thereby programmatically extend your rule matching capacity beyond the limits of the grammar.

Example 1 - Validation with Callbacks

 Var cardinal:
 (
 (text: regex("^[1-9]+$"))
)

 Var particle:
 (
 (text: "st)
 (text: "nd")
 (text: "rd")
 (text: "th")
)

 Law I_want_an_Nth_icecream:
 - callback: "validate_Nth_icecream"
 (
 (text: "I")
 (text: "want")
 (text: regex("an?"))
 cardinal -> $cardinal
 particle -> $particle
 (text: "icecream")
)

The above rule would successfully match I want a 2nd icecream.
It will also incorrectly match I want a 2th ice cream because we didn’t spell out all valid English ordinal abbreviations explicitly.
Instead of writing an exhaustive list, callbacks can be used to filter out false positives post-match.
The following callback definition provides an example of post-match validation:

Example 2 - Callback example

 ORDINALS = {
 '1': 'st',
 '2': 'nd',
 '3': 'rd'
 }

 def validate_Nth_icecream(doc, span_range, match_data):
 cardinal_offsets = match_data['_']['labels']['cardinal']
 particle_offsets = match_data['_']['labels']['particle']

 cardinal = doc[*cardinal_offsets].text
 particle = doc[*particle_offsets].text

 if ORDINALS.get(cardinal, 'th') != particle:
 print('No ice cream for you!')
 else:
 print(f'This is your {cardinal}{particle} ice cream!'

Note how the labels cardinal and particle are used to easily identify relevant tokens in the match.

Modularity

When working with large nested rule bases, callbacks can quickly start to become very complex.
This can be prevented by applying a modular pattern within your rule base and your callback codebase:

Example 3 - Modularity with Callbacks

 Var cardinal:
 (
 (text: regex("^[1-9]+$"))
)

 Var particle:
 (
 (text: "st")
 (text: "nd")
 (text: "rd")
 (text: "th")
)

 Law abbreviated_ordinal:
 - callback: "validate_ordinal"
 (
 $cardinal
 $particle
)

 Law Do_you_want_the_Nth_or_Nth_icecream:
 - callback: "validate_Nth_or_Nth_icecream"
 (
 (text: "Do")
 (text: "you")
 (text: "want")
 (text: "the")
 ordinal1 -> $abbreviated_ordinal
 (text: "or")
 ordinal2 -> $abbreviated_ordinal
 (text: "icecream")
)

This example shows how you can delegate validation complexity to a sub-rule.
The ordinal validation behaviour is logically separated from the sentence validation behaviour. This allows to maintain a more readable grammar and have a cleaner 1-to-1 relationship between logical units, rules and callbacks:

Example 4 - Modularity with Callbacks

 ORDINALS = {
 '1': 'st',
 '2': 'nd',
 '3': 'rd'
 }

 def validate_ordinal(doc, span_range, match_data):
 cardinal_offsets = match_data['_']['labels']['cardinal']
 particle_offsets = match_data['_']['labels']['particle']

 cardinal = doc[*cardinal_offsets].text
 particle = doc[*particle_offsets].text

 if ORDINALS.get(cardinal, 'th') == particle:
 doc[cardinal_offsets[0]:particle_offsets[1]]._.ordinal = cardinal + particle

 def validate_Nth_or_Nth_icecream(doc, span_range, match_data):
 ordinal1_offsets = match_data['_']['labels']['ordinal1']
 ordinal2_offsets = match_data['_']['labels']['ordinal2']

 ordinal1 = doc[*ordinal1_offsets]._.ordinal
 ordinal2 = doc[*ordinal2_offsets]._.ordinal

 if ordinal1 and ordinal2 and ordinal1 == ordinal2:
 print('You mentioned the same ice cream twice! I want more choice!')
 else:
 print('These are both valid options! How can I choose?!')

Note that validate_ordinal is only responsible for validating the abbreviated ordinal.
If successful, it persists its results in the doc object. These will be picked up by validate_Nth_or_Nth_icecream, which does not perform any additional validation of the ordinal syntax. Instead, it checks that the two compared ordinals are different.
This example shows how frequent callback usage can be used to achieve better segregation of responsibility.

👑 hrmb package

hmrb.core module

	
class hmrb.core.Core(callbacks: Optional[Dict] = None, sets: Optional[Dict] = None, sort_length: bool = False)

	Bases: object

Class handling the main functions surrounding the rule engine

	Parameters

	
	callbacks (dict) – dictionary of callback functions to execute
following a successfull call.

	sort_length (bool) – sort match results according to span length in
ascending order (affects callback execution as
well.)

	Public methods:
	load : add list of rules to engine
__call__ : match list of input dicts with internal rules

	
execute(responses: Union[List[Tuple[Tuple[int, int], List[Dict]]], ItemsView[Tuple[int, int], List[Dict]]], input: Any) → None

	

	
_load(rules: List[List[Dict]], vars: List[List[Dict]]) → None

	Adds list of rules to the engine

	Implementation: passes rules to the root BaseNode of the class
	sequentially

	Parameters

	
	rules (list) – list of rules to add to root node

	vars (list) – list of shared varHandle objects to use

	
_match(spans: List[Tuple[int, list]]) → Union[List[Tuple[Tuple[int, int], List[Dict]]], ItemsView[Tuple[int, int], List[Dict]]]

	Takes a list of spans and executes matching by passing each
to the root node.

	Parameters

	spans (list) – list of spans to match

	Returns

	list of tuples containing match results

	Return type

	(list)

	
static default_callback(input_: list, span: slice, data: Dict) → None

	

	
load(inputs: str) → None

	Adds rules to the engine.

	Parameters

	inputs (list) – list of rules in dialect

	
class hmrb.core.SpacyCore(callbacks: typing.Optional[typing.Dict] = None, sets: typing.Optional[typing.Dict] = None, map_doc: typing.Callable = <function _default_map>, sort_length: bool = False)

	Bases: hmrb.core.Core

Class wrapping the Core object into a spaCy component.

	Parameters

	
	callbacks (dict) – dictionary of callback functions to execute
following a successfull call.

	sort_length (bool) – sort match results according to span length in
ascending order (affects callback execution as
well.)

	Public methods:
	load : add list of rules in the engine
__call__ : match a spaCy Document or Span against the rule set

	
name = 'hmrb'

	

	
hmrb.core._default_map(doc: Any) → Any

	

hmrb.node module

	
class hmrb.node.BaseNode(data: Optional[Dict] = None)

	Bases: object

Class for handling nodes

BaseNodes is an atomic element of our data structure. Each token is handled
by a separate BaseNode (or one of its subclasses). The BaseNode is designed
to build itself in a recursive manner through the consume method from a
list of dict rules. It handles the matching of a list of incoming tokens
through the BaseNode call method.

	Parameters

	data (dict) – data associated with the node (optional: None)

	Public methods:
	consume : handles the building of the data structure from a rule
__call__ : handles the matching of incoming data

	
_build_child(child_key: Tuple[frozenset, int], child: hmrb.node.BaseNode) → None

	Adds new child to the children of BaseNode. Updates call order
and attribute index with the new child.

	Parameters

	
	child_key (frozenset) – a hashable identifier for new child

	child (BaseNode) – new child BaseNode object

	
_consume_child(next_rule_token: Dict, rule: List[Dict], vars: Dict, sets: Dict) → None

	

	
_consume_regex(next_rule_token: Dict, rule: List[Dict], vars: Dict, sets: Dict) → None

	

	
_consume_set(next_rule_token: Dict, rule: List[Dict], vars: Dict, sets: Dict) → None

	

	
_consume_var(next_rule_token: Dict, rule: List[Dict], vars: Dict, sets: Dict) → None

	

	
static _make_node_key(token: Dict) → Tuple[frozenset, int]

	Creates a hashable dictionary key from a dict token

	Parameters

	token (dict) – a token dictionary

	Returns: (frozenset, int) created from the list of (key, value) tuples
	(sorted by default) and hash of data items

	
_match(token: Dict) → set

	(private) Handles the matching of a single token dictionary with
the current nodes children.

Implementation: TODO:

	Notes: In the case of missing attribute att_name, att_value is None
	and all children with att_name are removed from the matches

	Parameters

	token (dict) – dict of (attribute, values) of a single token

	
consume(rule: List[Dict], vars: Dict, sets: Dict) → None

	Builds internal representation from list of rules

	Implementation: Recursively handles the construction of the internal
	tree structure. Passes token to the appropriate
BaseNode class/subclass for handling.
If an equivalent node already exists, the remaining
tokens of the rules are passed to that node. If no
such node exists a new node is added to the children
of the current node.

	Parameters

	
	rule (List(dict)) – list of token rule token dictionaries

	vars (dict) – dict of all varHandle objects created

	
static get_att(token: Any, att_name: str) → Any

	Retrieves the value of a token attribute regardless of whether it is a
dictionary or a normal object.

	Parameters

	
	token (Any) – : target token

	att_name (str) – : attribute name

	Returns

	Value of the target attribute

	Return type

	response (Any)

	
optimise_call_order() → None

	

	
class hmrb.node.FrozenMap(*args: Any, **kwargs: Any)

	Bases: collections.abc.Mapping

based on https://github.com/pcattori/maps
Creates a hashable from any object using frozensets

	
_abc_impl = <_abc_data object>

	

	
classmethod recurse(obj: Any) → Any

	

	
class hmrb.node.RegexNode(token: Dict)

	Bases: hmrb.node.BaseNode

	
class hmrb.node.SetNode(rule_set: Dict, data: Dict)

	Bases: hmrb.node.BaseNode

Class for Set nodes

SetNode is a subclass of BaseNode designed to efficiently handling the
matching of sets.

	Parameters

	
	rule_set (dict) – global dictionary of sets to check

	data (dict) – data object that is returned if the
SetNode is matched.

	Public methods:
	
	__call__handles the matching of incoming list of tokens by
	checking if the token is present in the rule_set.

	
class hmrb.node.StarNode(data: Optional[Dict] = None)

	Bases: hmrb.node.BaseNode

	
hmrb.node._recurse(obj: Any, map_fn: Callable) → Any

	based on https://github.com/pcattori/maps
Handles recursion within FrozenMap

	
hmrb.node.make_key(obj: Any) → int

	
	Parameters

	obj (any) – any type of nested / unnested object

Returns: (int) created from the hash of the FrozenMap object

Notes: Python’s hash() is inconsistent across processes/runs.

	
class hmrb.node.varNode(var_handle: hmrb.node.BaseNode, data: Dict, min_length: int, min_run: int, max_run: int)

	Bases: hmrb.node.BaseNode

Class for var nodes

varNode is a subclass of BaseNode designed to efficiently handling
the reuse of the same node structure (macros). The varNode wraps around
a BaseNode object (varHandle) to support shared objects and
the logical repitition of executions.
The remaining parts are passed to its super BaseNode consume. In this way,
we have a clear distinction between repeated/seperated section and
sections that follow the repeated parts.

Matching is done in a similar two step process. First, the incoming pattern
is passed to the varHandle structure var_handle returning depths of
successfull matches. Depending on parameters of the varNode, it tries to
match the varHandle multiple times. The remaining unmatched
tokens are passed to the children “outer” structure for matching.
In case, min_run is 0 it also passes the original input to the “outer”
structure.

	Parameters

	
	var_handle (BaseNode) – shared BaseNode object that becomes the
“inner” structure of the varNode

	data (dict) – data object that is returned if the
varNode is matched.

	min_length (int) – precomputed minimum length of the inner
structure. Used to determine if enough
input tokens are left to do another loop.

	min_run (int) – minimum runs of the inner structure. If
set to 0 the inner structure is optional
(default 1).

	max_run (int) – maximum runs of the inner structure
(default 1).

	Public methods:
	
	__call__handles the matching of incoming list of tokens by
	first recursing through the shared inner varHandle
and then by recursing the remaining unmatched tokens
through the super BaseNode object (“outer”).

hmrb.lang module

	
class hmrb.lang.Block(members: List, vars: Dict, neg: bool, min_: int, max_: int, label: Optional[str], union: bool = False, is_body: bool = False)

	Bases: object

Represents a rule block that may be the body or part of the body of a Law
or a Var.

	Parameters

	
	members (members [dict] -- Block) –

	negated (neg [bool] --) –

	matches (max [int] -- maximum number of) –

	matches –

	
_add_var(children: list, length: int, min_: int, max_: int) → Any

	

	
_parse_block(block: hmrb.lang.Block) → None

	

	
_parse_labeled_element(label: str, parent: list) → None

	

	
_parse_ref(ref: hmrb.lang.Ref) → None

	

	
_parse_unit(unit: hmrb.lang.Unit) → None

	

	
_sequence_extend(block: hmrb.lang.Block) → None

	

	
_union_extend(block: hmrb.lang.Block) → None

	

	
parse() → None

	

	
class hmrb.lang.BlockIterator(block_str: str, inf: int = 10000000000, start: int = 1)

	Bases: object

Provides an iterator that iterates over the top-level block segments. These
segments could be blocks (see also Block), units (see also Unit), and
variable references (see also Ref). These blocks are validated but parsed
later on. This iterator will produce tuples of the following shape:
(content_string, negated, min_match_num, max_match_num)

	Parameters

	
	string (block_str [str] -- block) –

	value (inf [int] -- infinity) –

	line (start [int] -- start) –

	
_check_body_level() → None

	

	
_close_bracket(ch: str) → None

	Handles a closing bracket.

Level 0: checks for an open variable reference and closes the block
Level 1: checks type of segment (block/unit) and adds to iterable
Other levels: adds character to the buffer

	Parameters

	ch – – closing bracket character

	
_consume(block: str) → None

	Consumes a block string a character at a time. Note that escaped
characters are treated differently through the character iterator.
The iterator acts on all brackets but it validates only variable
references and operators from level 1 (the top content level).

	Parameters

	string (block [str] -- block) –

	
_open_bracket(ch: str) → None

	Handles opening bracket.

Level 0: checks for no operators and opens the block
Level 1: parses operator into operator buffer and adds char to buffer
Other levels: add to buffer

	Parameters

	ch – – open bracket char

	
_parse_label() → None

	

	
_parse_operator() → Tuple

	Assumes that there is an operator in the buffer and parses it. Spaces
are important for all operators. They are matched as show below.
Number placeholders can be replaced with any valid integer.

Examples

	not

	optional

	zero or more

	one or more

	at least {number}

	at most {number}

	{number} to {number}

	Raises

	ValueError -- when buffer doesn't contain a valid operator and is – not empty

	Returns

	[Tuple] – negated[bool], min # matches, max # matches

	
_parse_var() → None

	Parses a variable reference name and adds it to the iterable.

	
property is_union: bool

	

	
class hmrb.lang.Grammar(string: str, vars_: Dict)

	Bases: object

Represents a Babylonian grammar. It may consist of Var and Law segments.

	Parameters

	parsed (string [str] -- grammar string to be) –

	
_build(string: str) → None

	

	
_deploy() → None

	

	
_map_segments(type_: Any) → Dict

	Collects all segments of particular type and creates a mapping between
their names and the objects themselves.

	Returns

	[dict] – mapping between variable names and segments

	
static _parse_segment_type(line: str) → Optional[hmrb.lang.Types]

	Determines the type of grammar segment: Law or Var.

	Parameters

	line – – segment lines

	Returns

	[Types] – segment type

	
_segment(string: str) → Generator

	Segments the grammar into laws (Law) and variables (Var). Yields
the type of the segment as well as all the lines.

	Parameters

	string – – string representation of the segment

	
static end_var(parent_end: Any) → None

	

	
parser_map = {<Types.VAR: 'var'>: <class 'hmrb.lang.Var'>, <Types.LAW: 'law'>: <class 'hmrb.lang.Law'>}

	

	
class hmrb.lang.Law(lines: List, vars: Dict)

	Bases: object

Represents a rule segment of a Babylonian grammar. It consists of an
optional name, a list of attributes, and a compulsory body.

	Parameters

	lines (lines [list] -- segment) –

	
_parse(lines: List) → None

	

	
static _parse_atts(lines: List) → Dict

	

	
static _parse_name(first_line: str, start: int) → str

	

	
static _segment_lines(lines: List) → Tuple[List, List]

	

	
class hmrb.lang.Ref(ref: str, neg: bool, min_: int, max_: int, label: Optional[str])

	Bases: object

Represents a reference to a variable.

	Parameters

	
	reference (ref [str] -- variable) –

	negated (neg [bool] --) –

	matches (max [int] -- maximum number of) –

	matches –

	label (label [str] -- reference) –

	
class hmrb.lang.Types(value)

	Bases: enum.Enum

Types of segments and items

	
BLOCK = 'block'

	

	
LAW = 'law'

	

	
UNIT = 'unit'

	

	
VAR = 'var'

	

	
VAR_REF = 'var_ref'

	

	
class hmrb.lang.Unit(atts: Dict, neg: bool, min_: int, max_: int, label: Optional[str])

	Bases: object

Represents a group of attribute constraints that form a rule unit. Units
are typically members of a block.

	Parameters

	
	attributes (atts [dict] -- unit) –

	negated (neg [bool] --) –

	matches (max [int] -- maximum number of) –

	matches –

	label (label [str] -- unit) –

	
class hmrb.lang.Var(lines: List, vars: Dict)

	Bases: object

Represents a named rule variable segment of a Babylonian grammar.

	Parameters

	lines (lines [list] -- segment) –

	
_parse(lines: List) → None

	

	
static _parse_name(first_line: str, start: int) → str

	

	
hmrb.lang.char_iter(string: str) → Generator

	Iterate over the characters of a string while preserving escaped chars. The
point is to allow escaped characters to be treated differently during char
iteration (parsing) and then unescaped inside the final data structure.

	Parameters

	string (string [str] -- regex) –

	Returns

	
	[Generator] – generator iterating over the characters of the
	string

	
hmrb.lang.parse_block(string: str, vars: Dict, neg: bool = False, min_: int = 1, max_: int = 1, label: Optional[str] = None, start: int = - 1) → hmrb.lang.Block

	Parses a block string into a Block object. Takes quantifiers and negation
modifier parameters. Recursively calls itself or parse_unit to parse
nested blocks and units.

	Parameters

	
	string (string [str] -- block) –

	negated (neg [bool] -- True if) –

	matches (max [int] -- maximum number of) –

	matches –

	label (label [str] -- block) –

	number (start [int] -- block start line) –

	Returns

	[Block] – Block object representing the parsed string

	
hmrb.lang.parse_unit(string: str, neg: bool = False, min_: int = 1, max_: int = 1, label: Optional[str] = None) → hmrb.lang.Unit

	Parses a unit string into a Unit object. Unit is a list of key-value pairs
inside a pair of brackets. Key-value pairs are separated by a comma. There
are colons between keys and values. Values are set inside double quotes,
while keys are alphanumeric var-like names. Hyphens and underscores are
allowed in the key names, but numbers and hyphens are not allowed in the
beginning. An arbitrary amount of space separators is allowed between each
of the components of the Unit (key, value, colon and comma).

Examples

	(att_name: “attribute value”, att-name2: “attribute value”)

	(att_name:”attribute value”,att-name2:”attribute value”)

	Parameters

	
	string (string [str] -- unit) –

	negated (neg [bool] -- True if) –

	matches (max [int] -- maximum number of) –

	matches –

	Returns

	[Unit] – Unit object representing the parsed string

	
hmrb.lang.parse_value(string: str) → Union[str, dict, bool, int, float]

	Unescapes a Unit attribute value and determines whether it is a regular
string or a Regex.

	Parameters

	value (string [str] -- attribute) –

	Returns

	[Union[str, Regex, bool, int, float]] – parsed value

	
hmrb.lang.unescape(string: str) → str

	Unescaping escaped characters typically inside attribute values.

	Parameters

	unescaped (string [str] -- string to be) –

	Returns

	[str] – unescaped string

	
hmrb.lang.unique(sequence: list) → Iterator

	

hmrb.protobuffer module

	
class hmrb.protobuffer.Labels(labels: set, depth: int, length: int = 1)

	Bases: object

Class wrapper handling Labels message protobuffer

Class for creating, holding and merging Labels type protobuffer messages
with other defined types of messages.
Initialization of the class creates a new Labels message.
Addition of new Labels is handled through the += (__iadd__) magic method.

	Protobuffer definition (proto3):
	
	message Labels {
	map<string, Span> items = 1; }

	message Span {
	string start = 1;
string end = 2; }

	Parameters

	
	labels (list) –

	depth (int) – of the Match span)

	length (int) – (defaults to 1)

	Public methods:
	+= – handles the addition of a new protobuffer to the object
get_depth – returns the maximum depth reached

Notes

span start and end integers are stored as strings, since protobuffers
are not able to distinguish between set 0 and unset (default) 0. See
Google’s protobuffer documentation on default values.

	
class hmrb.protobuffer.Match(attributes: Dict, depth: int)

	Bases: object

Class wrapper handling Match message protobuffers

Class for creating, holding and merging Match type protobuffer messages
with other defined types of messages.
Initialization of the class creates a new Match message. The Match is
considered Active if it contains any valid attributes. Inactive Matches
are later ignored in merging objects. An inactive Match with depth_reached
transfers its depth_reached to the new object.
Addition of data is handled through the += (__iadd__) magic method.

	Protobuffer definition (proto3):
	
	message Match {
	Span span = 1;
map<string, string> attributes = 2;
map<string, google.protobuf.Any> underscore = 3; }

	message Span {
	string start = 1;
string end = 2; }

	Parameters

	
	attributes (dict) – (except reserved attributes that are added
to underscore)

	depth (int) – of the Match span)

	Public methods:
	+= – handles the addition of a new protobuffer to the object
set_depth – sets depth reached
get_depth – returns the maximum depth reached

Notes

span start and end integers are stored as strings, since protobuffers
are not able to distinguish between set 0 and unset (default) 0. See
Google’s protobuffer documentation on default values.

	
get_depth() → int

	

	
set_depth(depth: int) → None

	

	
set_start(start: int) → None

	

	
class hmrb.protobuffer.Responses

	Bases: object

Class wrapper handling Responses message protobuffers

Class for creating, holding and merging Response type protobuffer messages
with other defined types of messages (see response.proto for protocol
buffer definitions). Initializing the class creates an empty Responses
protobuffer.
Addition of data is handled through the += (__iadd__) magic method.

	Protobuffer definition (proto3):
	
	message Responses {
	repeated Match items = 1; }

	Public methods:
	+= – handles the addition of a new protobuffer to the object
set_start – sets the start of all (not set) span messages
get_depth – returns the maximum depth reached

	
format(sort_length: bool = False) → Union[List[Tuple[Tuple[int, int], List[Dict]]], ItemsView[Tuple[int, int], List[Dict]]]

	

	
get_depth() → int

	

	
set_depth(depth: int) → None

	

	
set_start(start: int) → None

	

	
hmrb.protobuffer.mirror_depth(left: Union[hmrb.protobuffer.Match, hmrb.protobuffer.Responses], right: Union[hmrb.protobuffer.Match, hmrb.protobuffer.Responses]) → None

	

	
hmrb.protobuffer.mirror_labels(left: Any, right: Any) → None

	

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hmrb	

 	
 	
 hmrb.core	

 	
 	
 hmrb.lang	

 	
 	
 hmrb.node	

 	
 	
 hmrb.protobuffer	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	_abc_impl (hmrb.node.FrozenMap attribute)

 	_add_var() (hmrb.lang.Block method)

 	_build() (hmrb.lang.Grammar method)

 	_build_child() (hmrb.node.BaseNode method)

 	_check_body_level() (hmrb.lang.BlockIterator method)

 	_close_bracket() (hmrb.lang.BlockIterator method)

 	_consume() (hmrb.lang.BlockIterator method)

 	_consume_child() (hmrb.node.BaseNode method)

 	_consume_regex() (hmrb.node.BaseNode method)

 	_consume_set() (hmrb.node.BaseNode method)

 	_consume_var() (hmrb.node.BaseNode method)

 	_default_map() (in module hmrb.core)

 	_deploy() (hmrb.lang.Grammar method)

 	_execute() (hmrb.core.Core method)

 	_load() (hmrb.core.Core method)

 	_make_node_key() (hmrb.node.BaseNode static method)

 	_map_segments() (hmrb.lang.Grammar method)

 	_match() (hmrb.core.Core method)

 	(hmrb.node.BaseNode method)

 	
 	_open_bracket() (hmrb.lang.BlockIterator method)

 	_parse() (hmrb.lang.Law method)

 	(hmrb.lang.Var method)

 	_parse_atts() (hmrb.lang.Law static method)

 	_parse_block() (hmrb.lang.Block method)

 	_parse_label() (hmrb.lang.BlockIterator method)

 	_parse_labeled_element() (hmrb.lang.Block method)

 	_parse_name() (hmrb.lang.Law static method)

 	(hmrb.lang.Var static method)

 	_parse_operator() (hmrb.lang.BlockIterator method)

 	_parse_ref() (hmrb.lang.Block method)

 	_parse_segment_type() (hmrb.lang.Grammar static method)

 	_parse_unit() (hmrb.lang.Block method)

 	_parse_var() (hmrb.lang.BlockIterator method)

 	_recurse() (in module hmrb.node)

 	_segment() (hmrb.lang.Grammar method)

 	_segment_lines() (hmrb.lang.Law static method)

 	_sequence_extend() (hmrb.lang.Block method)

 	_union_extend() (hmrb.lang.Block method)

B

 	
 	BaseNode (class in hmrb.node)

 	Block (class in hmrb.lang)

 	
 	BLOCK (hmrb.lang.Types attribute)

 	BlockIterator (class in hmrb.lang)

C

 	
 	char_iter() (in module hmrb.lang)

 	
 	consume() (hmrb.node.BaseNode method)

 	Core (class in hmrb.core)

D

 	
 	default_callback() (hmrb.core.Core static method)

E

 	
 	end_var() (hmrb.lang.Grammar static method)

F

 	
 	format() (hmrb.protobuffer.Responses method)

 	
 	FrozenMap (class in hmrb.node)

G

 	
 	get_att() (hmrb.node.BaseNode static method)

 	get_depth() (hmrb.protobuffer.Match method)

 	(hmrb.protobuffer.Responses method)

 	
 	Grammar (class in hmrb.lang)

H

 	
 	
 hmrb

 	module

 	
 hmrb.core

 	module

 	
 hmrb.lang

 	module

 	
 	
 hmrb.node

 	module

 	
 hmrb.protobuffer

 	module

I

 	
 	is_union (hmrb.lang.BlockIterator property)

L

 	
 	Labels (class in hmrb.protobuffer)

 	Law (class in hmrb.lang)

 	
 	LAW (hmrb.lang.Types attribute)

 	load() (hmrb.core.Core method)

M

 	
 	make_key() (in module hmrb.node)

 	Match (class in hmrb.protobuffer)

 	mirror_depth() (in module hmrb.protobuffer)

 	mirror_labels() (in module hmrb.protobuffer)

 	
 module

 	hmrb

 	hmrb.core

 	hmrb.lang

 	hmrb.node

 	hmrb.protobuffer

N

 	
 	name (hmrb.core.SpacyCore attribute)

O

 	
 	optimise_call_order() (hmrb.node.BaseNode method)

P

 	
 	parse() (hmrb.lang.Block method)

 	parse_block() (in module hmrb.lang)

 	
 	parse_unit() (in module hmrb.lang)

 	parse_value() (in module hmrb.lang)

 	parser_map (hmrb.lang.Grammar attribute)

R

 	
 	recurse() (hmrb.node.FrozenMap class method)

 	Ref (class in hmrb.lang)

 	
 	RegexNode (class in hmrb.node)

 	Responses (class in hmrb.protobuffer)

S

 	
 	set_depth() (hmrb.protobuffer.Match method)

 	(hmrb.protobuffer.Responses method)

 	set_start() (hmrb.protobuffer.Match method)

 	(hmrb.protobuffer.Responses method)

 	
 	SetNode (class in hmrb.node)

 	SpacyCore (class in hmrb.core)

 	StarNode (class in hmrb.node)

T

 	
 	Types (class in hmrb.lang)

U

 	
 	unescape() (in module hmrb.lang)

 	unique() (in module hmrb.lang)

 	
 	Unit (class in hmrb.lang)

 	UNIT (hmrb.lang.Types attribute)

V

 	
 	Var (class in hmrb.lang)

 	VAR (hmrb.lang.Types attribute)

 	
 	VAR_REF (hmrb.lang.Types attribute)

 	varNode (class in hmrb.node)

 nav.xhtml

 Table of Contents

 		
 Hammurabi 🏺

 		
 👩‍🏫 Introduction

 		
 Features

 		
 Rationale

 		
 Release History

 		
 🦍 Quick Start

 		
 Installation

 		
 Input

 		
 Rules

 		
 Callbacks

 		
 A Complete Example

 		
 🎯 Writing Rules

 		
 Basic rule syntax

 		
 Union (OR)

 		
 Optionals and multiples

 		
 Regular Expression

 		
 Variables

 		
 Callbacks and Labels

 		
 🤖 spaCy and callbacks

 		
 Hammurabi in spaCy 2.X pipelines

 		
 Hammurabi in spaCy 3.X pipelines

 		
 Handling Callbacks

 		
 Validation

 		
 Modularity

 		
 👑 hrmb package

 		
 hmrb.core module

 		
 hmrb.node module

 		
 hmrb.lang module

 		
 hmrb.protobuffer module

_static/file.png

_static/alex-jones-6799-unsplash.jpg

_static/minus.png

_static/plus.png

_images/2ts980c3qzhz.jpg

_images/alex-jones-6799-unsplash.jpg

_static/2ts980c3qzhz.jpg

